Little Devil’s Postpile, Yosemite National Park

This portion of the project focuses on analysis of 90Ar/3%Ar in K-feldspar, biotite, and plagioclase. Preliminary Cath: gr:ilt:eak
data follow predicted behavior, where a higher closure temperature system such as biotite is affected to a
lesser degree than K-feldspar at the same distance from the intrusion. 40Ar/39Ar analysis of the basalt reveals "

an intrusion age of 7.7 Ma. Age spectra from both proximal and distal biotites display little to no resetting. ¢
Samples closer to the contact are needed for more meaningful biotite data. Plagioclase display jagged age
spectra and low temperature excess argon however proximal samples appear partially reset. MDD modeling
of distal K-feldspar sample (22 m) reveals the Cathedral Peak granite cooled quickly at ~80 Ma. K-feldspar
samples proximal to the intrusion contact (4.5 and 6.86 m) display partial resetting. Forward modeling of the S w— Vleters
closest sample indicates that the maximum thermal pulse experienced by this sample was approximately

420°C, 100°C lower than predicted by the model proposed by Calk and Naeser (1973).

Age Spectra

Biotite Age Spectra
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Sample Age spectra for each thermochonometric system.
Systems with lower closure temperatures such as biotite
display little to no resetting as close as 4.5 m from the
contact. K-feldspar and plagioclase display partial resetting
at distances close to the contact indicating thermal effects
for moderate temperature systems to at least 22 meters
from the intrusion. Plagioclase display intermediate age
maxima, possibly due to high temperature recrystallization
close to the contact. Black = LDP10-03 (62.8 m); Green =
LDP10-01 (22 m); Purple = LDP10-10 (6.86 m); Red =
LDP10-05 (4.5 m).

Jennifer L Schmidt - Earth and Environmental Sciences, Lehigh University

Abstract - A better understanding of the systematics of several commonly used thermochronometers will
provide the geologic community a basis to interpret thermochronologic data. To this end, this study focuses
on intercalibrating several established and experimental chronometers. The Little Devil’s Postpile intrusion,
located within Yosemite National Park, is an ideal location for this study. This approximately 100 m diameter
asymmetrical basalt plug intruded the Cathedral Peak granite (quartz monzonite), at ~8 Ma. The thermal
pulse resulting from the injection of the basalt systematically reset the age of the ~80 Ma host. Little Devil’s
Postpile provides the opportunity to evaluate the relative performance of several thermochronometric
systems in a natural geologic setting. Samples were collected along two transects within the Cathedral Peak
granite to assess the resetting response of individual thermochronometers to a relatively short thermal pulse.

Distal Sample Kinetics and Inverse Model

Assessing Thermochronometer Systematics in a Natural Geologic Setting,
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The Little Devil’s Postpile is an ~8 Ma asymmetric porphyritic olivine

Y basalt plug that intruded the Cathedral Peak Granite, an ~80 Ma
quartz monzonite. To assess thermochronometer systematics, two
transects were collected orthogonal to the intrusion contact within

the Cathedral Peak Granite. Systems analysed in this work include
40Ar/39Ar in K-feldspar, biotite, and plagioclase.

K-feldspar MDD Modeling

Multidomain diffusion (MDD)
modeling and inversion of sample
LDP10-01, from 22 m away from

MDD  modeling of sample

PFOXImal Sample KII’]EtICS and Forward MOdEl LDP10-05, from 4.5 meters from the

intrusion. (a) Arrhenius and log
(R/Ro) plots and associated kinetic
parameters and domain structure,
(b) Age spectra resulting from
forward model of LDP10-05
calculated from distal sample

domain structure. Black = age
spectra from distal sample

LDP10-01. Blue = spectrum from
proximal sample LDP10-05. Gray =
predicted spectrum for thermal
model of Calk and Naeser (1973) in
which the magma temperature of
the intrusion was assumed to be
1530 °C (higher than typically
assumed to account for latent heat)
and the maximum temperature

i o i o o 4 || experienced by the sample at 4.5
Cumulative *¥Ar Released meters away was 521 °C for a
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duration of ~10 years. Dashed gray
= predicted age spectra for thermal
pulse 50°C above and below the
Calk and Naeser (1973) model. Red
= predicted spectra 100°C below
the Calk and Naeser (1973) model.

Apatite & Zircon U-Th/He
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Apatite and zircon U-Th/He data courtesy of P. Reiners.
Data indicate resetting of these systems close to the
intrusion. Apatite data display anomaously young ages
at 18.75 meters and grade to a background age ~20 Ma
younger than predicted by other systems. K-feldspar
inverse modeling indicate fast cooling of the Cathedral
Peak Granite at ~80 Ma, however apatite background
ages of ~60 Ma may indicate slow cooling or far distal
effects of the basalt intrusion.
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